When presenting content, the more concrete, the better (WIL #4)

I’ve learned that, when presenting content, the more concrete, the better. This is something I thought I knew quite well by the time I started my first (and only, so far) regular job as a secondary math teacher, but I found otherwise! For example, many of my Algebra II Honors students were having trouble understanding negative exponents. To make the relationships involved more concrete, I drew the following table on the greenboard, showing how positive integer exponents relate to repeated multiplication:

  x1 x2 x3 x4
  x x· x x· x· x x· x· x· x

Then I observed that each time you add one to the exponent, you multiply by x one more time. I asked the class how this could be extended to non-positive exponents. Not getting an answer from them, I answered myself by pointing out that that rule is equivalent to the rule that each time you subtract one from the exponent, you divide by x one more time. I added a few columns to the left:

x–2 x–1 x0 x1 x2 x3 x4
1/( x· x) 1/x 1 x x· x x· x· x x· x· x· x

I commented further that defining powers of x below the 1st that way is the only way to be consistent with positive powers.

That helped some, but not as much as I expected. It was only much later that I realized I could easily have made things really concrete simply by substituting, say, 3 for x ! (It might also have helped if I’d used a variable other than x, since x looks a lot like a multiplication sign.) I’ve made this mistake of not being as concrete as possible many times. I think the main reason is that I tend to assume that expressions like the ones above are already so concrete, there’s no need to get even more so. But that’s not a safe assumption, to put it mildly—not even with an honors class like mine.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s